PAQR-2 Regulates Fatty Acid Desaturation during Cold Adaptation in C. elegans

نویسندگان

  • Emma Svensk
  • Marcus Ståhlman
  • Carl-Henrik Andersson
  • Maja Johansson
  • Jan Borén
  • Marc Pilon
چکیده

C. elegans PAQR-2 is homologous to the insulin-sensitizing adiponectin receptors in mammals, and essential for adaptation to growth at 15°C, a low but usually acceptable temperature for this organism. By screening for novel paqr-2 suppressors, we identified mutations in genes involved in phosphatidylcholine synthesis (cept-1, pcyt-1 and sams-1) and fatty acid metabolism (ech-7, hacd-1, mdt-15, nhr-49 and sbp-1). We then show genetic evidence that paqr-2, phosphatidylcholines, sbp-1 and Δ9-desaturases form a cold adaptation pathway that regulates the increase in unsaturated fatty acids necessary to retain membrane fluidity at low temperatures. This model is supported by the observations that the paqr-2 suppressors normalize the levels of saturated fatty acids, and that low concentrations of detergents that increase membrane fluidity can rescue the paqr-2 mutant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Adiponectin Receptor Homologs in C. elegans Promote Energy Utilization and Homeostasis

Adiponectin is an adipokine with insulin-sensitising actions in vertebrates. Its receptors, AdipoR1 and AdipoR2, are PAQR-type proteins with 7-transmembrane domains and topologies reversed that of GPCR's, i.e. their C-termini are extracellular. We identified three adiponectin receptor homologs in the nematode C. elegans, named paqr-1, paqr-2 and paqr-3. These are differently expressed in the in...

متن کامل

The adiponectin receptor AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 prevent membrane rigidification by exogenous saturated fatty acids

Dietary fatty acids can be incorporated directly into phospholipids. This poses a specific challenge to cellular membranes since their composition, hence properties, could greatly vary with different diets. That vast variations in diets are tolerated therefore implies the existence of regulatory mechanisms that monitor and regulate membrane compositions. Here we show that the adiponectin recept...

متن کامل

Warm up and cool down!

In adaption to shifts in ambient temperature, both prokaryotic and eukaryotic cells maintain physiological homeostasis by adjusting various cellular properties, including membrane lipid fluidity, the capacity to maintain proteostasis and rate of protein synthesis [1]. How cells respond to temperature changes is a fundamental question in cell physiology. Here we briefly review current understand...

متن کامل

Germline Signals Deploy NHR-49 to Modulate Fatty-Acid β-Oxidation and Desaturation in Somatic Tissues of C. elegans

In C. elegans, removal of the germline extends lifespan significantly. We demonstrate that the nuclear hormone receptor, NHR-49, enables the response to this physiological change by increasing the expression of genes involved in mitochondrial β-oxidation and fatty-acid desaturation. The coordinated augmentation of these processes is critical for germline-less animals to maintain their lipid sto...

متن کامل

Leveraging the withered tail tip phenotype in C. elegans to identify proteins that influence membrane properties

The properties of cellular membranes are critical for most cellular functions and are influenced by several parameters including phospholipid composition, integral and peripheral membrane proteins, and environmental conditions such as temperature. We previously showed that the C. elegans paqr-2 and iglr-2 mutants have a defect in membrane homeostasis and exhibit several distinct phenotypes, inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013